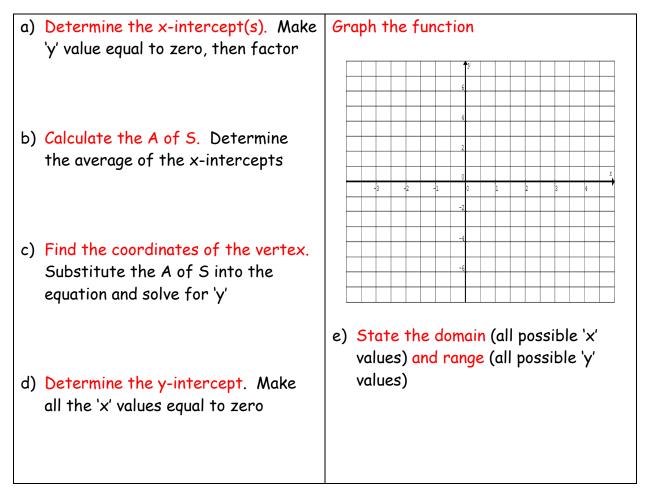
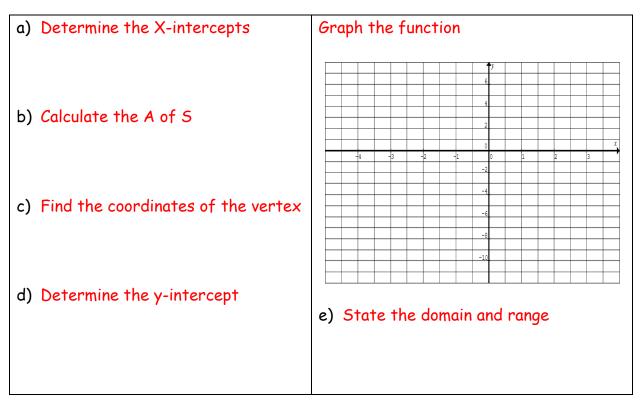
Recall that any quadratic function expressed in standard form is $y = a(x-p)^2 + q$

Quadratic functions can also be written in the <u>general form</u> $y = Ax^2 + Bx + C$ where we have three methods of graphing these functions expressed in this form

- 1. We can use the X.A.V. method
 - a. Factor the trinomial to find the X-intercepts
 - b. Find the <u>A of S</u> by calculating the average of the x-intercepts (which is the x-coordinate of the vertex)
 - c. Determine the y-coordinate of the <u>Vertex</u> by substituting the xcoordinate from the A of S into the equation and solve for 'y'
 - d. Graph the parabola by using the congruency values from the constant 'a'
- 2. <u>Completing the Square</u> (Sec 3.3) is the other method where we use algebraic manipulation to change the function from general form to standard form
- 3. The textbook method is similar to XAV method, but finds A of S differently

Example 1: Graph $y = x^2 - x - 6$, and answer the following questions.





Example 2: Graph $y = 2x^2 + 3x - 9$, and answer the questions that follow.

The textbook method requires us to understand the algebraic manipulation from standard form to general form

$y = a(x-p)^{2} + q$ $y = a(x^{2}-2px+p^{2}) + q$	 Expand the expression Distributive law to rid brackets
y = ax2 - 2apx + ap2 + q y = ax2 + (-2ap)x + (ap2 + q)	• Group " x^2 ", " x ", and constant terms
$y = ax^2 - bx + c$	

Did you observe a couple of things when we went from standard to general form?

- 1. Notice that b = -2ap. If we solve for 'p', we get $p = \frac{-b}{2a}$. Since A of S is x = p in standard form, therefore A of S is $x = \frac{-b}{2a}$ in general form.
- 2. You should also notice that $c = ap^2 + q$. Solving for 'q', we get $q = c ap^2$

To recap then, the textbook has one difference in finding the coordinates of the vertex and the A of S

- We need to calculate the x-coordinate of the vertex first using $x = \frac{-b}{2a}$
- \circ This coordinate will also be the equation for the A of S
- Sub this coordinate into the equation and solve for 'y' (the y-coordinate of vertex)
- The 'x' & 'y' intercepts will be solved the same way
 - X-intercepts: make y = 0 and solve for 'x'
 - Y-intercepts: make x = 0 and solve for 'y'

Example 3: Graph $y = (x-3)^2 - 9$, and determine the vertex, A of S, x & y-intercepts, domain, and range

a) Change to general form	f) Find x-intercepts. y-coordinate = 0
b) Determine x-coordinate of vertex	Graph function (congruent to $y = x^2$)
c) This is also equation for A of S	
d) Sub x-coordinate into equation and find 'y' to determine vertex	2 2 2 - - - - - - - - - - - - -
e) Find y-intercept. x-coordinate = 0	g) Determine domain and range